Convergence of first‐order finite volume method based on exact Riemann solver for the complete compressible Euler equations

نویسندگان

چکیده

Recently developed concept of dissipative measure-valued solution for compressible flows is a suitable tool to describe oscillations and singularities possibly in solutions multidimensional Euler equations. In this paper we study the convergence first-order finite volume method based on exact Riemann solver complete Specifically, derive entropy inequality prove consistency numerical method. Passing limit, show weak strong identify their limit. The results presented spiral, Kelvin-Helmholtz Richtmyer-Meshkov problem are consistent with our theoretical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoint-based Adaptive Finite Element Method For The Compressible Euler Equations Using Finite Calculus

In this paper, an adjoint-based error estimation and mesh adaptation framework is developed for the compressible inviscid flows. The algorithm employs the Finite Calculus (FIC) scheme for the numerical solution of the flow and discrete adjoint equations in the context of the Galerkin finite element method (FEM) on triangular grids. The FIC scheme treats the instabilities normally generated in t...

متن کامل

Exact Riemann Solutions to Compressible Euler Equations in Ducts with Discontinuous Cross–section

Abstract. We determine completely the exact Riemann solutions for the system of Euler equations in a duct with discontinuous varying cross–section. The crucial point in solving the Riemann problem for hyperbolic system is the construction of the wave curves. To address the difficulty in the construction due to the nonstrict hyperbolicity of the underlying system, we introduce the L–M and R–M cu...

متن کامل

Implicit Finite Element Schemes for the Stationary Compressible Euler Equations

Semi-implicit and Newton-like finite element methods are developed for the stationary compressible Euler equations. The Galerkin discretization of the inviscid fluxes is potentially oscillatory and unstable. To suppress numerical oscillations, the spatial discretization is performed by a high-resolution finite element scheme based on algebraic flux correction. A multidimensional limiter of TVD ...

متن کامل

A robust WENO type finite volume solver for steady Euler equations on unstructured grids

A recent work of Li et al. [Numer. Math. Theor. Meth. Appl., Vol. 1, pp. 92-112(2008)] proposed a finite volume solver to solve 2D steady Euler equations. Although the Venkatakrishnan limiter is used to prevent the non-physical oscillations nearby the shock region, the overshoot or undershoot phenomenon can still be observed. Moreover, the numerical accuracy is degraded by using Venkatakrishnan...

متن کامل

Convergence Rate for Compressible Euler Equations with Damping and Vacuum

We study the asymptotic behavior of L∞ weak-entropy solutions to the compressible Euler equations with damping and vacuum. Previous works on this topic are mainly concerned with the case away from the vacuum and small initial data. In the present paper, we prove that the entropy-weak solution strongly converges to the similarity solution of the porous media equations in L(R) (2 p < ∞) with deca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Methods for Partial Differential Equations

سال: 2023

ISSN: ['1098-2426', '0749-159X']

DOI: https://doi.org/10.1002/num.23025